(Answer any FIVE Questions)
 All questions carry equal marks

1. Determine the forces acting in all the members of the frame shown below indicate the nature of forces also. (Tension as +ve and compression as -ve)

2. A beam 4 m long simply supported at the ends carries loads of 20 KN each at a distance of 1 m from each end. Determine the slope at the ends and the maximum deflection. $\mathrm{E}=200 \mathrm{KN} / \mathrm{mm}^{2} \mathrm{I}=5000$ Cm^{2}.
3. A cantilever 3 m long has moment of jurertia $800 \mathrm{Cm}^{4}$ for 1 m length from the free end, $1600 \mathrm{Cm}^{4}$ for the next 1 m length $2400 \mathrm{Cm}^{4}$ for the last 1 m . length. At the free end a load of 1 KN acts on the cantilever. Determine the slope and deflections at the free end of the cantilever $\mathrm{E}=210 \mathrm{GN} / \mathrm{m}^{2}$
4. A thin cylindrical shell of 0.6 meter diameter and 0.9 meter long is subjected to an internal pressure $1.2 \mathrm{~N} / \mathrm{mm}^{2}$. Thickness of cylinder wall is 15 mm . Determine
(a) longitudinal stress, circumferential stress and maximum shear stress induced and
(b) Change in diameter, length and volume. Take $\mathrm{E}=200 \mathrm{Gpa}$ and $1 / \mathrm{m}=0.3$
5. A thin spherical shell 500 mm diameter, 2.5 mm thick is full of water at atmospheric pressure. Find the internal pressure developed in the vessel if $40 \times 10^{3} \mathrm{~mm}^{3}$ of water at atmospheric pressure is pumped into it. Calculate the resulting hoop stress and the change in volume of the shell if $\mathrm{E}=200$ Gpa, Poission's ratio $=0.25$ and bulk modulus of water $=2360 \mathrm{~N} / \mathrm{mm}^{2}$.
6. Show that a thin walled spherical vessel of diameter d and thickness t is subjected to an internal pressure p , the increase in volume is equal to $\pi \mathrm{pd}^{4} / 8 \mathrm{tE}(1-\nu)$.
7. Derive a formula for the difference of radii for shrinkage of a compound thick cylindrical shell.
8. A compound cylinder is formed by shrinking one steel tube onto another, the final dimensions being, internal diameter 180 mm , external diameter 360 mm , common diameter 300 mm . If the radial pressure at the junction is $25 \mathrm{~N} / \mathrm{mm}^{2}$, calculate the maximum and minimum hoop stresses in the two tubes. Also calculate the initial difference in diameters of the common surface. E for steel $=200 \mathrm{GPa}$.
If the compound cylinder is subjected to an internal pressure of $50 \mathrm{~N} / \mathrm{mm}^{2}$, calculate the final hoop stresses in the two tubes. z
